LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes.

نویسندگان

  • Ernö Kiss
  • Boglárka Oláh
  • Péter Kaló
  • Monica Morales
  • Anne B Heckmann
  • Andrea Borbola
  • Anita Lózsa
  • Katalin Kontár
  • Patrick Middleton
  • J Allan Downie
  • Giles E D Oldroyd
  • Gabriella Endre
چکیده

The formation of a nitrogen-fixing nodule requires the coordinated development of rhizobial colonization and nodule organogenesis. Based on its mutant phenotype, lumpy infections (lin), LIN functions at an early stage of the rhizobial symbiotic process, required for both infection thread growth in root hair cells and the further development of nodule primordia. We show that spontaneous nodulation activated by the calcium- and calmodulin-dependent protein kinase is independent of LIN; thus, LIN is not necessary for nodule organogenesis. From this, we infer that LIN predominantly functions during rhizobial colonization and that the abortion of this process in lin mutants leads to a suppression of nodule development. Here, we identify the LIN gene in Medicago truncatula and Lotus japonicus, showing that it codes for a predicted E3 ubiquitin ligase containing a highly conserved U-box and WD40 repeat domains. Ubiquitin-mediated protein degradation is a universal mechanism to regulate many biological processes by eliminating rate-limiting enzymes and key components such as transcription factors. We propose that LIN is a regulator of the component(s) of the nodulation factor signal transduction pathway and that its function is required for correct temporal and spatial activity of the target protein(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel, putative MEK kinase controls developmental timing and spatial patterning in Dictyostelium and is regulated by ubiquitin-mediated protein degradation.

We have identified a developmentally regulated, putative MEK kinase (MEKKalpha) that contains an F-box and WD40 repeats and plays a complex role in regulating cell-type differentiation and spatial patterning. Cells deficient in MEKKalpha develop precociously and exhibit abnormal cell-type patterning with an increase in one of the prestalk compartments (pstO), a concomitant reduction in the pres...

متن کامل

The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection

Symbiosis between legume plants and soil rhizobia culminates in the formation of a novel root organ, the 'nodule', containing bacteria differentiated as facultative nitrogen-fixing organelles. MtNF-YA1 is a Medicago truncatula CCAAT box-binding transcription factor (TF), formerly called HAP2-1, highly expressed in mature nodules and required for nodule meristem function and persistence. Here a ...

متن کامل

NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner

Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, in...

متن کامل

Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes

The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitroge...

متن کامل

Rhizobial infection is associated with the development of peripheral vasculature in nodules of Medicago truncatula.

Nodulation in legumes involves the coordination of epidermal infection by rhizobia with cell divisions in the underlying cortex. During nodulation, rhizobia are entrapped within curled root hairs to form an infection pocket. Transcellular tubes called infection threads then develop from the pocket and become colonized by rhizobia. The infection thread grows toward the developing nodule primordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 151 3  شماره 

صفحات  -

تاریخ انتشار 2009